Sistema de numeración:
es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos y cantidades. Se caracteriza por su base que es el número de símbolos distintos que utiliza, y además es el coeficiente que determina cual es el valor de cada símbolo dependiendo de la posición que ocupe.
Los sistemas de numeración actuales son sistemas posicionales en los que el valor relativo que representa cada símbolo o cifra de una determinada cantidad depende de su valor absoluto y de la posición relativa que ocupa dicha cifra con respecto a la coma decimal.
El sistema decimal
Es un sistema de numeración en el que las cantidades se representan utilizando como base el número diez, por lo que se compone de las cifras: cero (0); uno (1); dos (2); tres (3); cuatro (4); cinco (5); seis (6); siete (7); ocho (8) y nueve (9).
El sistema binario
Es un sistema de numeración en base 2, en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Los ordenadores trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
Cada cifra o dígito de un número representado en este sistema se denomina BIT (contracción de binary digit).
Para la medida de cantidades de información representadas en binario se utilizan una serie de múltiplos del bit que poseen nombre propio; estos son:
1 bit = unidad mínima de información.
8 bits = 1 Byte
1 byte =1 letra, numero, símbolo de puntuación.
Unidades de medida de almacenamiento
1,024 bytes = 1 Kilobyte, Kbyte o KB
1,024 KB= 1 Megabyte, Mbyte o MB (1,048,576 bytes)
1,024 MB= 1 Gigabyte, Gbyte o GB (1,073,741,824 bytes)
1,024 GB= 1 Terabyte, Tbyte o TB (1,099,511,627,776 bytes)
1,024 TB= 1 Pentabyte, Pbyte o PB (1,125,899,906,842,624 bytes)
Aprovecho para dejarles un video que puede ayudarlos a comprender el sistema binario.
El Sistema Octal: Es un sistema de numeración cuya base es 8, es decir, utiliza símbolos para la representación de cantidades, estos símbolos son:
01234567.
Este sistema también es de los llamados posicionales y la posición de sus cifras se mide con relación a la coma decimal que en caso de no aparecer se supone implícitamente a la derecha del número.
La aritmética en este sistema es similar a la de los sistemas decimal y binario, por lo tanto entraremos en su estilo
Sistema Hexadecimal
El sistema hexadecimal, a veces abreviado como hex, es el sistema de numeración posicional de base 16 —empleando por tanto 16 símbolos—. Su uso actual está muy vinculado a la informática y ciencias de la computación.
En principio dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
CONVERSIÓN DE UN NUMERO DECIMAL A BINARIO
Para esta transformación es necesario tener en cuenta los pasos que mostraremos en el siguiente ejemplo: Transformemos el numero 42 a numero binario
1. Dividimos el numero 42 entre 2
2. Dividimos el cociente obtenido por 2 y repetimos el mismo procedimiento hasta que el cociente sea 1.
3. El numero binario lo formamos tomando el primer dígito el ultimo cociente, seguidos por los residuos obtenidos en cada división, seleccionándolos de derecha a izquierda, como se muestra en el siguiente esquema.
Figura 7: Conversión de decimal a binarioCONVERSIÓN DE UN NUMERO DECIMAL FRACCIONARIO A UN NUMERO BINARIO
1. la parte entera se transforma de igual forma que el ejemplo anterior.
2. La parte fraccionaria de la siguiente manera:
Multiplicamos por el numero 2 y tomamos la parte entera del producto que ira formando el numero binario correspondiente
Tomamos nuevamente la parte entera del producto, y la parte fraccionaria la multiplicamos sucesivamente por 2 hasta llegar a 0
Tomamos nuevamente la parte entera , y como la parte fraccionaria es 0, indica que se ha terminado el proceso. El numero binario correspondiente a la parte decimal será la unión de todas las partes enteras, tomadas de las multiplicaciones sucesivas realizadas durante el transcurso del proceso , en donde el primer dígito binario corresponde a la primera parte entera , el segundo dígito a la segunda parte entera , y así sucesivamente hasta llegar al ultimo .Luego tomamos el numero binario , correspondiente a la parte entera , y el numero binario , correspondiente a la parte fraccionaria y lo unimos en un solo numero binario correspondiente a el numero decimal.
Figura 8: Conversión de decimal fraccionario a binarioCONVERSIÓN DE UN NUMERO BINARIO A UN NUMERO DECIMAL
Para convertir un número binario a decimal, realizamos los siguientes pasos:
1. Tomamos los valores de posición correspondiente a las columnas donde aparezcan únicamente unos
2. Sumamos los valores de posición para identificar el numero decimal equivalente
Figura 9: Conversión de binario a decimalCONVERSIÓN DE UN NUMERO DECIMAL A OCTAL
1. Se toma el numero entero y se divide entre 8 repetidamente hasta que el dividendo sea menor que el divisor, para colocar entonces el numero 0 y pasar el dividendo a formar el primer dígito del numero equivalente en decimal
2. Se toma la parte fraccionaria del numero decimal y la multiplicamos por 8 sucesivamente hasta que el producto no tenga números fraccionarios
3. Pasamos la parte entera del producto a formar el dígito correspondiente
4. Al igual que los demás sistemas , el numero equivalente en el sistema decimal , esta formado por la unión del numero entero equivalente y el numero fraccionario equivalente.
Figura 10: Conversión de decimal a octalCONVERSIÓN DE UN NUMERO OCTAL A BINARIO
La ventaja principal del sistema de numeración Octal es la facilidad conque pueden realizarse la conversión entre un numero binario y octal. A continuación mostraremos un ejercicio que ilustrará la teoría. Por medio de este tipo de conversiones, cualquier numero Octal se convierte a binario de manera individual. En este ejemplo, mostramos claramente el equivalente 100 111 010 en binario de cada numero octal de forma individual.
Figura 11: Conversión de octal a binarioCONVERSIÓN DE UN NUMERO DECIMAL A UN NUMERO HEXADECIMAL
Convertir el numero 250.25 a Hexadecimal
1. Se toma la parte entera y se divide sucesivamente por el numero decimal 16 (base) hasta que el cociente sea 0
2. Los números enteros resultantes de los cocientes, pasarán a conformar el numero hexadecimal correspondiente, teniendo en cuenta que el sistema de numeración hexadecimal posee solo 16 símbolos, donde los números del 10 hasta el 15 tienen símbolos alfabéticos que ya hemos explicado
3. La parte fraccionaria del numero a convertir se multiplica por 16 (Base) sucesivamente hasta que el producto resultante no tenga parte fraccionaria
4. Al igual que en los sistemas anteriores, el numero equivalente se forma, de la unión de los dos números equivalentes, tanto entero como fraccionario, separados por un punto que establece la diferencia entre ellos.
Figura 12: Conversión de decimal a hexadecimalCONVERSIÓN DE UN NUMERO HEXADECIMAL A UN NUMERO DECIMAL
Como en los ejemplos anteriores este también nos ayudará a entender mejor este procedimiento: Convertir el numero hexadecimal 2B6 a su equivalente decimal.
1. Multiplicamos el valor de posición de cada columna por el dígito hexadecimal correspondiente.
2. El resultado del número decimal equivalente se obtiene, sumando todos los productos obtenidos en el paso anterior.
Figura 13: Conversión de hexadecimal a decimal
No hay comentarios.:
Publicar un comentario